Produkt zum Begriff Learning:
-
Introducing Machine Learning
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
Preis: 29.95 € | Versand*: 0 € -
Privacy-Preserving Machine Learning
Privacy-Preserving Machine Learning is a practical guide to keeping ML data anonymous and secure. You'll learn the core principles behind different privacy preservation technologies, and how to put theory into practice for your own machine learning. Complex privacy-enhancing technologies are demystified through real world use cases forfacial recognition, cloud data storage, and more. Alongside skills for technical implementation, you'll learn about current and future machine learning privacy challenges and how to adapt technologies to your specific needs. By the time you're done, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.Large-scale scandals such as the Facebook Cambridge Analytic a data breach have made many users wary of sharing sensitive and personal information. Demand has surged among machine learning engineers for privacy-preserving techniques that can keep users private details secure without adversely affecting the performance of models.
Preis: 55.63 € | Versand*: 0 € -
Distributed Machine Learning Patterns
Practical patterns for scaling machine learning from your laptop to a distributed cluster.In Distributed Machine Learning Patterns you will learn how to:Apply distributed systems patterns to build scalable and reliable machine learning projectsConstruct machine learning pipelines with data ingestion, distributed training, model serving, and moreAutomate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo WorkflowsMake trade offs between different patterns and approachesManage and monitor machine learning workloads at scaleScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelinesDistributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.about the technologyScaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure.about the bookDistributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you've mastered these cutting edge techniques, you'll put them all into practice and finish up by building a comprehensive distributed machine learning system.
Preis: 56.7 € | Versand*: 0 € -
Managing Machine Learning Projects
The go-to guide in machine learning projects from design to production. No ML skills required! In Managing Machine Learning Projects, you will learn essential machine learning project management techniques, including: Understanding an ML project's requirements Setting up the infrastructure for the project and resourcing a team Working with clients and other stakeholders Dealing with data resources and bringing them into the project for use Handling the lifecycle of models in the project Managing the application of ML algorithms Evaluating the performance of algorithms and models Making decisions about which models to adopt for delivery Taking models through development and testing Integrating models with production systems to create effective applications Steps and behaviours for managing the ethical implications of ML technology About the technology Companies of all shapes, sizes, and industries are investing in machine learning (ML). Unfortunately, around 85% of all ML projects fail. Managing machine learning projects requires adopting a different approach than you would take with standard software projects. You need to account for large and diverse data resources, evaluate and track multiple separate models, and handle the unforeseeable risk of poor performance. Never fear this book lays out the unique practices you will need to ensure your projects succeed!
Preis: 56.7 € | Versand*: 0 €
-
Was sind die wichtigsten Anwendungen von Machine-to-Machine (M2M) Kommunikation in der Industrie und im Internet of Things (IoT)?
Die wichtigsten Anwendungen von M2M-Kommunikation in der Industrie und im IoT sind die Fernüberwachung und -steuerung von Maschinen und Anlagen, die Optimierung von Produktionsprozessen durch Echtzeitdatenanalyse und die Automatisierung von Abläufen zur Effizienzsteigerung. M2M ermöglicht außerdem die Vernetzung von Geräten und Sensoren zur Verbesserung der Sicherheit, Qualität und Nachhaltigkeit in verschiedenen Branchen. Durch die nahtlose Kommunikation zwischen Maschinen können Unternehmen Kosten senken, die Produktivität steigern und neue Geschäftsmodelle entwickeln.
-
Wie beeinflusst Machine Learning die zukünftige Entwicklung von Technologie und Gesellschaft?
Machine Learning ermöglicht die Entwicklung von fortschrittlicheren Technologien, die bisherige Grenzen überschreiten. Es kann die Effizienz und Genauigkeit von Prozessen verbessern und neue Möglichkeiten für Innovationen schaffen. Gleichzeitig birgt es jedoch auch ethische und soziale Herausforderungen, die sorgfältig berücksichtigt werden müssen.
-
Hat Machine Learning wirklich etwas mit künstlicher Intelligenz zu tun?
Ja, Machine Learning ist ein Teilgebiet der künstlichen Intelligenz. Es befasst sich mit der Entwicklung von Algorithmen und Modellen, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen oder Entscheidungen zu treffen. Machine Learning ist eine Methode, um künstliche Intelligenz zu erreichen, indem Computer in der Lage sind, Aufgaben zu erlernen und auszuführen, für die normalerweise menschliche Intelligenz erforderlich ist.
-
Wie wird Machine Learning dazu verwendet, um Muster in großen Datensätzen zu erkennen?
Machine Learning verwendet Algorithmen, um Muster in großen Datensätzen zu erkennen. Diese Algorithmen analysieren die Daten, identifizieren Trends und erstellen Modelle, um Vorhersagen zu treffen. Durch kontinuierliches Training und Anpassung verbessern sich die Modelle im Laufe der Zeit und können immer präzisere Ergebnisse liefern.
Ähnliche Suchbegriffe für Learning:
-
Grundkurs Machine Learning (Wilmott, Paul)
Grundkurs Machine Learning , Maschinelles Lernen - alle Grundlagen! Paul Wilmott ist für seine erhellende und unterhaltsame Darstellung angewandter Mathematik bekannt. Von der linearen Regression bis zu Neuronalen Netzwerken führt er Sie durch alle Verfahren, und zwar komplett Software-unabhängig. Der Vorteil dabei: Jeder Schritt ist schwarz auf weiß zu sehen, kein Framework kann etwas "verstecken", es geht immer um die Sache selbst. Mit vielen Beispielen, Grafiken und Schritt-für-Schritt-Kästen. Für alle, die wirklich verstehen wollen, wie Maschinen lernen. Aus dem Inhalt: Lineare Regression k-Nearest Neighbors Naive Bayes-Klassifikatoren k-Means-Algorithmus Support Vector Machines Logistische Regression Selbstorganisierende Karten Entscheidungsbäume Reinforcement Learning Neuronale Netze , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20200724, Produktform: Kartoniert, Titel der Reihe: Rheinwerk Computing##, Autoren: Wilmott, Paul, Seitenzahl/Blattzahl: 256, Themenüberschrift: COMPUTERS / General, Keyword: Hand-Buch Bücher lernen Studium Grundlagen Kurse Workshops Tutorials Wissen Anleitung Training Ausbildung; Robotik; Informatik verstehen; Programmierung programmieren; KI-Welt AI; Künstliche Intelligenz; Software-Entwicklung; Coder Coden; Neuronale Netze; Deep Learning; Mathematik, Fachschema: Informatik~Programmiersprachen~EDV / Theorie / Allgemeines, Fachkategorie: Informatik~Informationstechnik (IT), allgemeine Themen, Sprache: Deutsch, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Thema: Verstehen, Text Sprache: ger, Verlag: Rheinwerk Verlag GmbH, Verlag: Rheinwerk Verlag GmbH, Breite: 175, Höhe: 17, Gewicht: 480, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0006, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel, WolkenId: 2327150
Preis: 29.90 € | Versand*: 0 € -
Automated Machine Learning in Action
Optimize every stage of your machine learning pipelines with powerful automation components and cutting-edge tools like AutoKeras and KerasTuner. Automated Machine Learning in Action, filled with hands-onexamples and written in an accessible style, reveals how premade machine learning components can automate time-consuming ML tasks.Automated Machine Learning in Action teaches you to automate selecting the best machine learning models or data preparation methods for your own machine learning tasks, so your pipelines tune themselves without needing constant input. You'll quickly run through machine learning basics thatopen upon AutoML to non-data scientists, before putting AutoML into practicefor image classification, supervised learning, and more.Automated machine learning (AutoML) automates complex andtime-consuming stages in a machine learning pipeline with pre packaged optimal solutions. This frees up data scientists from data processing and manualtuning, and lets domain experts easily apply machine learning models to their projects.
Preis: 47.07 € | Versand*: 0 € -
Machine Learning Engineering in Action
Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code!You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learningand the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt.
Preis: 55.63 € | Versand*: 0 € -
Ensemble Methods for Machine Learning
Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results.Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models.About the TechnologyEnsemble machine learning lets you make robust predictions without needing the huge datasets and processing power demanded by deep learning. It sets multiple models to work on solving a problem, combining their results for better performance than a single model working alone. This "wisdom of crowds" approach distils information from several models into a set of highly accurate results.
Preis: 56.7 € | Versand*: 0 €
-
Was sind die wichtigsten Anwendungen von Machine Learning in der heutigen Technologiebranche?
Die wichtigsten Anwendungen von Machine Learning in der heutigen Technologiebranche sind personalisierte Empfehlungssysteme, Bild- und Spracherkennung sowie Betrugserkennung und -prävention. Machine Learning wird auch für automatisierte Entscheidungsfindung, Predictive Maintenance und Prozessoptimierung eingesetzt. Es wird zunehmend in verschiedenen Branchen wie Gesundheitswesen, Finanzwesen, Einzelhandel und Automobilindustrie eingesetzt.
-
Wie beeinflusst Machine Learning die Automobilindustrie, die Gesundheitsbranche und den Finanzsektor?
Machine Learning hat in der Automobilindustrie zu Fortschritten bei der Entwicklung autonomer Fahrzeuge geführt, die die Sicherheit und Effizienz des Straßenverkehrs verbessern sollen. In der Gesundheitsbranche wird Machine Learning eingesetzt, um Krankheiten frühzeitig zu erkennen, personalisierte Behandlungspläne zu erstellen und medizinische Bildgebung zu verbessern. Im Finanzsektor wird Machine Learning für die Betrugsprävention, die Risikobewertung und die automatisierte Handelsausführung eingesetzt, um die Effizienz und Genauigkeit von Finanzdienstleistungen zu steigern.
-
Was sind die gängigsten Anwendungsbereiche von Machine Learning in der heutigen Technologiebranche?
Die gängigsten Anwendungsbereiche von Machine Learning in der Technologiebranche sind Personalisierung von Inhalten und Empfehlungssysteme, Betrugserkennung und Sicherheit sowie Prognoseanalysen und Optimierung von Geschäftsprozessen. Machine Learning wird auch für Bild- und Spracherkennung, medizinische Diagnosen und autonome Fahrzeuge eingesetzt. Insgesamt wird Machine Learning in vielen Bereichen eingesetzt, um Daten zu analysieren, Muster zu erkennen und Vorhersagen zu treffen.
-
Was sind die grundlegenden Anwendungen von Machine Learning in der heutigen Technologie?
Die grundlegenden Anwendungen von Machine Learning in der heutigen Technologie sind die Personalisierung von Diensten und Produktempfehlungen, die Vorhersage von Trends und Verhaltensweisen sowie die Automatisierung von Prozessen und Entscheidungsfindungen. Machine Learning wird auch in der Bild- und Spracherkennung, medizinischen Diagnosen und autonomem Fahren eingesetzt. Es ermöglicht Unternehmen, Daten effizient zu analysieren und Muster zu identifizieren, um fundierte Entscheidungen zu treffen und Innovationen voranzutreiben.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.